GaussianBlur in PyTorch (1)

Buy Me a Coffee☕ *Memos: My post explains OxfordIIITPet(). GaussianBlur() can randomly blur an image as shown below: *Memos: The 1st argument for initialization is num_output_channels(Required-Type:int or tuple/list(int)): *Memos: It's [height, width]. It must be odd 1

Feb 15, 2025 - 23:53
 0
GaussianBlur in PyTorch (1)

Buy Me a Coffee

*Memos:

GaussianBlur() can randomly blur an image as shown below:

*Memos:

  • The 1st argument for initialization is num_output_channels(Required-Type:int or tuple/list(int)): *Memos:
    • It's [height, width].
    • It must be odd 1 <= x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [num_output_channels, num_output_channels].
  • The 2nd argument for initialization is sigma(Optional-Default:(0.1, 2.0)-Type:int or tuple/list(int)): *Memos:
    • It's [min, max] so it must be min <= max.
    • It must be 0 < x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [sigma, sigma].
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur

gaussianblur = GaussianBlur(kernel_size=1)
gaussianblur = GaussianBlur(kernel_size=1, sigma=(0.1, 2.0))

gaussianblur
# GaussianBlur(kernel_size=(1, 1), sigma=[0.1, 2.0])

gaussianblur.kernel_size 
# (1, 1)

gaussianblur.sigma
# [0.1, 2.0]

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

ks1_data = OxfordIIITPet( # `ks` is kernel_size.
    root="data",
    transform=GaussianBlur(kernel_size=1)
    # transform=GaussianBlur(kernel_size=[1])
    # transform=GaussianBlur(kernel_size=[1, 1])
)

ks5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5)
)

ks11_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11)
)

ks51_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51)
)

ks101_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101)
)

ks5_51_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[5, 51])
)

ks51_5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 5])
)

ks1s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=0.1)
)

ks5s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5, sigma=0.1)
)

ks11s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11, sigma=0.1)
)

ks51s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51, sigma=0.1)
)

ks101s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=0.1)
)

ks9_51s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[9, 51], sigma=0.1)
)

ks51_9s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 9], sigma=0.1)
)

ks1s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=100)
)

ks5s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5, sigma=100)
)

ks11s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11, sigma=100)
)

ks51s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51, sigma=100)
)

ks101s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=100)
)

ks9_51s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[9, 51], sigma=100)
)

ks51_9s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 9], sigma=100)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1_data, main_title="ks1_data")
show_images1(data=ks5_data, main_title="ks5_data")
show_images1(data=ks11_data, main_title="ks11_data")
show_images1(data=ks51_data, main_title="ks51_data")
show_images1(data=ks101_data, main_title="ks101_data")
show_images1(data=ks5_51_data, main_title="ks5_51_data")
show_images1(data=ks51_5_data, main_title="ks51_5_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s01_data")
show_images1(data=ks5s01_data, main_title="ks5s01_data")
show_images1(data=ks11s01_data, main_title="ks11s01_data")
show_images1(data=ks51s01_data, main_title="ks51s01_data")
show_images1(data=ks101s01_data, main_title="ks101s01_data")
show_images1(data=ks9_51s01_data, main_title="ks9_51s01_data")
show_images1(data=ks51_9s01_data, main_title="ks51_9s01_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s100_data")
show_images1(data=ks5s01_data, main_title="ks5s100_data")
show_images1(data=ks11s01_data, main_title="ks11s100_data")
show_images1(data=ks51s01_data, main_title="ks51s100_data")
show_images1(data=ks101s01_data, main_title="ks101s100_data")
show_images1(data=ks9_51s01_data, main_title="ks9_51s100_data")
show_images1(data=ks51_9s01_data, main_title="ks51_9s100_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if ks:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            gb = GaussianBlur(kernel_size=ks, sigma=s)
            plt.imshow(X=gb(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1_data", ks=1)
show_images2(data=origin_data, main_title="ks5_data", ks=5)
show_images2(data=origin_data, main_title="ks11_data", ks=11)
show_images2(data=origin_data, main_title="ks51_data", ks=51)
show_images2(data=origin_data, main_title="ks101_data", ks=101)
show_images2(data=origin_data, main_title="ks5_51data", ks=[5, 51])
show_images2(data=origin_data, main_title="ks51_5_data", ks=[51, 5])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s01_data", ks=1, s=0.1)
show_images2(data=origin_data, main_title="ks5s01_data", ks=5, s=0.1)
show_images2(data=origin_data, main_title="ks11s01_data", ks=11, s=0.1)
show_images2(data=origin_data, main_title="ks51s01_data", ks=51, s=0.1)
show_images2(data=origin_data, main_title="ks101s01_data", ks=101, s=0.1)
show_images2(data=origin_data, main_title="ks5_51s01data", ks=[5, 51])
show_images2(data=origin_data, main_title="ks51_5s01_data", ks=[51, 5])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s100_data", ks=1, s=100)
show_images2(data=origin_data, main_title="ks5s100_data", ks=5, s=100)
show_images2(data=origin_data, main_title="ks11s100_data", ks=11, s=100)
show_images2(data=origin_data, main_title="ks51s100_data", ks=51, s=100)
show_images2(data=origin_data, main_title="ks101s100_data", ks=101, s=100)
show_images2(data=origin_data, main_title="ks5_51s100data", ks=[5, 51],
             s=100)
show_images2(data=origin_data, main_title="ks51_5s100_data", ks=[51, 5],
             s=100)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description