New Bismuth Transistor Runs 40% Faster and Uses 10% Less Power
Recently in material science news from China we hear that [Hailin Peng] and his team at Peking University just made the world’s fastest transistor and it’s not made of silicon. …read more


Recently in material science news from China we hear that [Hailin Peng] and his team at Peking University just made the world’s fastest transistor and it’s not made of silicon. Before we tell you about this transistor made from bismuth here’s a whirlwind tour of the history of the transistor.
The Bipolar Junction Transistor (BJT, such as NPN and PNP) was invented by Bell Labs in 1947. Later came Transistor-Transistor Logic (TTL) made with BJTs. The problem with TTL was too much power consumption.
Enter the energy-efficient Field-Effect Transistor (FET). The FET is better suited to processing information as it is voltage-controlled, unlike the BJT which is current-controlled. Advantages of FETs include high input impedance, low power consumption, fast switching speed, being well suited to Very-Large-Scale Integration (VLSI), etc.
The cornerstone of Complementary Metal-Oxide-Semiconductor (CMOS) technology which came to replace TTL was a type of FET known as the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). The type of MOSFET most commonly used in CMOS integrated circuits is the Enhancement-mode MOSFET which is normally off and needs gate voltage to conduct.
A transistor’s technology generation is given with the “process node”, in nanometers (nm). This used to mean the size of the smallest feature that could be fabricated, but these days it’s just a marketing term (smaller is “better”). Planar CMOS MOSFETs were initially dominant (through ~28nm), then came SOI MOSFETs (28nm to 16nm), then FinFETs (16nm to 5nm), and now finally Gate-All-Around FETs (GAAFETs, 3nm and beyond).
All of that in order to say that this new transistor from [Hailin Peng] and his team is a GAAFET. It’s made from bismuth oxyselenide (Bi₂O₂Se) for the channel, and bismuth selenite oxide (Bi₂SeO₅) as the gate material. See the article for further details.
Keep in mind that at this point in time we only have a prototype from a lab and the gory details about how to mass-produce these things, assuming that’s even possible, haven’t yet been worked out. We have previously discussed the difficulty of manufacturing state-of-the-art transistors. If you’re interested in bismuth be sure to check out how to use bismuth for desoldering.