Spring Boot Pro Tip: Boost Performance with @Cacheable + Java 17

If your Spring Boot app is hitting the database too often and slowing down, you need caching! Using @Cacheable, you can reduce unnecessary queries, speed up responses, and improve scalability. Let’s explore how to cache efficiently and avoid common pitfalls. The Problem: Too Many Database Calls Imagine we have a user service fetching data from the database: @Service public class UserService { @Autowired private UserRepository userRepository; public User getUserById(Long id) { return userRepository.findById(id).orElseThrow(); } } Every time getUserById() is called, it hits the database. But do we really need to fetch the same user multiple times? The Solution: @Cacheable Spring Boot makes caching easy. Just add @EnableCaching in your main class: @SpringBootApplication @EnableCaching public class MyApplication { public static void main(String[] args) { SpringApplication.run(MyApplication.class, args); } } Then, modify your service to cache users: @Service public class UserService { @Autowired private UserRepository userRepository; @Cacheable("users") public User getUserById(Long id) { return userRepository.findById(id).orElseThrow(); } } Now, when getUserById(id) is called multiple times, it returns the cached result instead of querying the database again! Fine-Tuning the Cache By default, @Cacheable caches results forever. To control expiration, use Caffeine or Redis. Use Caffeine for In-Memory Caching (Fast & Lightweight) Add the dependency: com.github.ben-manes.caffeine caffeine 3.0.6 Then, configure the cache with TTL (Time-To-Live) settings: @Configuration public class CacheConfig { @Bean public CacheManager cacheManager() { return new CaffeineCacheManager("users"); } } This ensures cached users expire after a certain period, preventing stale data. Use Redis for Distributed Caching (Great for Microservices) For scalability, store cached data in Redis: Add Redis dependency: org.springframework.boot spring-boot-starter-data-redis Configure Redis in application.yml: spring: redis: host: localhost port: 6379 Use Redis as Cache Manager: @Configuration public class RedisConfig { @Bean public RedisCacheManager cacheManager(RedisConnectionFactory connectionFactory) { return RedisCacheManager.builder(connectionFactory).build(); } } Result: The cache is shared across multiple instances, perfect for cloud deployments! Common Cache Mistakes to Avoid Forgetting to update the cache when data changes Use @CachePut to update cache when saving new data @CachePut(value = "users", key = "#user.id") public User saveUser(User user) { return userRepository.save(user); } Caching large objects Cache only frequent, small, and non-sensitive data Not setting an expiration time Always define TTL to prevent outdated data issues

Mar 17, 2025 - 15:12
 0
Spring Boot Pro Tip: Boost Performance with @Cacheable + Java 17

If your Spring Boot app is hitting the database too often and slowing down, you need caching! Using @Cacheable, you can reduce unnecessary queries, speed up responses, and improve scalability.

Let’s explore how to cache efficiently and avoid common pitfalls.

The Problem: Too Many Database Calls
Imagine we have a user service fetching data from the database:

@Service
public class UserService {
    @Autowired private UserRepository userRepository;

    public User getUserById(Long id) {
        return userRepository.findById(id).orElseThrow();
    }
}

Every time getUserById() is called, it hits the database. But do we really need to fetch the same user multiple times?

The Solution: @Cacheable
Spring Boot makes caching easy. Just add @EnableCaching in your main class:

@SpringBootApplication
@EnableCaching
public class MyApplication {
    public static void main(String[] args) {
        SpringApplication.run(MyApplication.class, args);
    }
}

Then, modify your service to cache users:

@Service
public class UserService {
    @Autowired private UserRepository userRepository;

    @Cacheable("users")
    public User getUserById(Long id) {
        return userRepository.findById(id).orElseThrow();
    }
}

Now, when getUserById(id) is called multiple times, it returns the cached result instead of querying the database again!

Fine-Tuning the Cache
By default, @Cacheable caches results forever. To control expiration, use Caffeine or Redis.
Use Caffeine for In-Memory Caching (Fast & Lightweight)
Add the dependency:


    com.github.ben-manes.caffeine
    caffeine
    3.0.6


Then, configure the cache with TTL (Time-To-Live) settings:

@Configuration
public class CacheConfig {
    @Bean
    public CacheManager cacheManager() {
        return new CaffeineCacheManager("users");
    }
}

This ensures cached users expire after a certain period, preventing stale data.

Use Redis for Distributed Caching (Great for Microservices)
For scalability, store cached data in Redis:

Add Redis dependency:


    org.springframework.boot
    spring-boot-starter-data-redis


Configure Redis in application.yml:

spring:
  redis:
    host: localhost
    port: 6379

Use Redis as Cache Manager:

@Configuration
public class RedisConfig {
    @Bean
    public RedisCacheManager cacheManager(RedisConnectionFactory connectionFactory) {
        return RedisCacheManager.builder(connectionFactory).build();
    }
}

Result: The cache is shared across multiple instances, perfect for cloud deployments!

Common Cache Mistakes to Avoid
Forgetting to update the cache when data changes
Use @CachePut to update cache when saving new data

@CachePut(value = "users", key = "#user.id")
public User saveUser(User user) {
    return userRepository.save(user);
}

Caching large objects
Cache only frequent, small, and non-sensitive data

Not setting an expiration time
Always define TTL to prevent outdated data issues