AugMix in PyTorch (15)
Buy Me a Coffee☕ *Memos: My post explains AugMix() about no arguments and full argument. My post explains AugMix() about severity argument (1). My post explains AugMix() about severity argument (2). My post explains AugMix() about severity argument (3). My post explains AugMix() about mixture_width argument (1). My post explains AugMix() about mixture_width argument (2). My post explains AugMix() about mixture_width argument (3). My post explains AugMix() about chain_depth argument (1). My post explains AugMix() about chain_depth argument (2). My post explains AugMix() about chain_depth argument (3). My post explains AugMix() about alpha argument (1). My post explains AugMix() about alpha argument (2). My post explains AugMix() about alpha argument (3). My post explains AugMix() about severity argument with mixture_width=0, chain_depth=0 and alpha=0.0 and mixture_width argument with severity=1, chain_depth=0 and alpha=0.0. AugMix() can randomly do AugMix to an image as shown below. *It's about chain_depth argument with severity=1, mixture_width=0 and alpha=0.0 and alpha argument with severity=1, mixture_width=0 and chain_depth=0: from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import AugMix from torchvision.transforms.functional import InterpolationMode origin_data = OxfordIIITPet( root="data", transform=None ) s1mw0cd0a0_data = OxfordIIITPet( # `s` is severity and `mw` is mixture_width. root="data", # `cd` is chain_depth and `a` is alpha. transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=0.0) ) s1mw0cd1a0_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=1, alpha=0.0) ) s1mw0cd2a0_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=2, alpha=0.0) ) s1mw0cd5a0_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=5, alpha=0.0) ) s1mw0cd10a0_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=10, alpha=0.0) ) s1mw0cd25a0_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=25, alpha=0.0) ) s1mw0cd50a0_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=50, alpha=0.0) ) s1mw0cd0a1_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=1.0) ) s1mw0cd0a2_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=2.0) ) s1mw0cd0a5_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=5.0) ) s1mw0cd0a10_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=10.0) ) s1mw0cd0a25_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=25.0) ) s1mw0cd0a50_data = OxfordIIITPet( root="data", transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=50.0) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=s1mw0cd0a0_data, main_title="s1mw0cd0a0_data") show_images1(data=s1mw0cd1a0_data, main_title="s1mw0cd1a0_data") show_images1(data=s1mw0cd2a0_data, main_title="s1mw0cd2a0_data") show_images1(data=s1mw0cd5a0_data, main_title="s1mw0cd5a0_data") show_images1(data=s1mw0cd10a0_data, main_title="s1mw0cd10a0_data") show_images1(data=s1mw0cd25a0_data, main_title="s1mw0cd25a0_data") show_images1(data=s1mw0cd50a0_data, main_title="s1mw0cd50a0_data") print() show_images1(data=s1mw0cd0a0_data, main_title="s1mw0cd0a0_data") show_images1(data=s1mw0cd0a1_data, main_title="s1mw0cd0a1_data") show_images1(data=s1mw0cd0a2_data, main_title="s1mw0cd0a2_data") show_images1(data=s1mw0cd0a5_data, main_title="s1mw0cd0a5_data") show_images1(data=s1mw0cd0a10_data, main_title="s1mw0cd0a10_data") show_images1(data=s1mw0cd0a25_data, main_title="s1mw0cd0a25_data") show_images1(data=s1mw0cd0a50_data, main_title="s1mw0cd0a50_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0, ao=True, ip=InterpolationMode.BILINEAR, f=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) am = AugMix(severity=s, mixture_width=mw, chai

*Memos:
-
My post explains AugMix() about no arguments and
full
argument. -
My post explains AugMix() about
severity
argument (1). -
My post explains AugMix() about
severity
argument (2). -
My post explains AugMix() about
severity
argument (3). -
My post explains AugMix() about
mixture_width
argument (1). -
My post explains AugMix() about
mixture_width
argument (2). -
My post explains AugMix() about
mixture_width
argument (3). -
My post explains AugMix() about
chain_depth
argument (1). -
My post explains AugMix() about
chain_depth
argument (2). -
My post explains AugMix() about
chain_depth
argument (3). -
My post explains AugMix() about
alpha
argument (1). -
My post explains AugMix() about
alpha
argument (2). -
My post explains AugMix() about
alpha
argument (3). -
My post explains AugMix() about
severity
argument withmixture_width=0
,chain_depth=0
andalpha=0.0
andmixture_width
argument withseverity=1
,chain_depth=0
andalpha=0.0
.
AugMix() can randomly do AugMix to an image as shown below. *It's about chain_depth
argument with severity=1
, mixture_width=0
and alpha=0.0
and alpha
argument with severity=1
, mixture_width=0
and chain_depth=0
:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode
origin_data = OxfordIIITPet(
root="data",
transform=None
)
s1mw0cd0a0_data = OxfordIIITPet( # `s` is severity and `mw` is mixture_width.
root="data", # `cd` is chain_depth and `a` is alpha.
transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=0.0)
)
s1mw0cd1a0_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=1, alpha=0.0)
)
s1mw0cd2a0_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=2, alpha=0.0)
)
s1mw0cd5a0_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=5, alpha=0.0)
)
s1mw0cd10a0_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=10, alpha=0.0)
)
s1mw0cd25a0_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=25, alpha=0.0)
)
s1mw0cd50a0_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=50, alpha=0.0)
)
s1mw0cd0a1_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=1.0)
)
s1mw0cd0a2_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=2.0)
)
s1mw0cd0a5_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=5.0)
)
s1mw0cd0a10_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=10.0)
)
s1mw0cd0a25_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=25.0)
)
s1mw0cd0a50_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=50.0)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1mw0cd0a0_data, main_title="s1mw0cd0a0_data")
show_images1(data=s1mw0cd1a0_data, main_title="s1mw0cd1a0_data")
show_images1(data=s1mw0cd2a0_data, main_title="s1mw0cd2a0_data")
show_images1(data=s1mw0cd5a0_data, main_title="s1mw0cd5a0_data")
show_images1(data=s1mw0cd10a0_data, main_title="s1mw0cd10a0_data")
show_images1(data=s1mw0cd25a0_data, main_title="s1mw0cd25a0_data")
show_images1(data=s1mw0cd50a0_data, main_title="s1mw0cd50a0_data")
print()
show_images1(data=s1mw0cd0a0_data, main_title="s1mw0cd0a0_data")
show_images1(data=s1mw0cd0a1_data, main_title="s1mw0cd0a1_data")
show_images1(data=s1mw0cd0a2_data, main_title="s1mw0cd0a2_data")
show_images1(data=s1mw0cd0a5_data, main_title="s1mw0cd0a5_data")
show_images1(data=s1mw0cd0a10_data, main_title="s1mw0cd0a10_data")
show_images1(data=s1mw0cd0a25_data, main_title="s1mw0cd0a25_data")
show_images1(data=s1mw0cd0a50_data, main_title="s1mw0cd0a50_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
ao=True, ip=InterpolationMode.BILINEAR, f=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
alpha=a, all_ops=ao, interpolation=ip, fill=f)
plt.imshow(X=am(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1mw0cd0a0_data", s=1, mw=0, cd=0,
a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd1a0_data", s=1, mw=0, cd=1,
a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd2a0_data", s=1, mw=0, cd=2,
a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd5a0_data", s=1, mw=0, cd=5,
a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd10a0_data", s=1, mw=0, cd=10,
a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd25a0_data", s=1, mw=0, cd=25,
a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd50a0_data", s=1, mw=0, cd=50,
a=0.0)
print()
show_images2(data=origin_data, main_title="s1mw0cd0a0_data", s=1, mw=0, cd=0,
a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd0a1_data", s=1, mw=0, cd=0,
a=1.0)
show_images2(data=origin_data, main_title="s1mw0cd0a2_data", s=1, mw=0, cd=0,
a=2.0)
show_images2(data=origin_data, main_title="s1mw0cd0a5_data", s=1, mw=0, cd=0,
a=5.0)
show_images2(data=origin_data, main_title="s1mw0cd0a10_data", s=1, mw=0, cd=0,
a=10.0)
show_images2(data=origin_data, main_title="s1mw0cd0a25_data", s=1, mw=0, cd=0,
a=25.0)
show_images2(data=origin_data, main_title="s1mw0cd0a50_data", s=1, mw=0, cd=0,
a=50.0)