RandomApply in PyTorch
Buy Me a Coffee☕ *My post explains OxfordIIITPet(). RandomApply() can randomly apply zero or more transformations to an image with a given probability as shown below: *Memos: The 1st argument for initialization is transforms(Required-Type:tuple, list or torch.nn.Module of transformations). *The transformations are applied from the 1st index in order. The 2nd argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos: It's the probability of whether an image is posterized or not. It must be 0

*My post explains OxfordIIITPet().
RandomApply() can randomly apply zero or more transformations to an image with a given probability as shown below:
*Memos:
- The 1st argument for initialization is
transforms
(Required-Type:tuple
,list
or torch.nn.Module of transformations). *The transformations are applied from the 1st index in order. - The 2nd argument for initialization is
p
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It's the probability of whether an image is posterized or not.
- It must be
0 <= x <= 1
.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomApply
rp = RandomApply(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)])
rp = RandomApply(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0.5)
rp
# RandomApply(RandomInvert(p=1)
# RandomVerticalFlip(p=1)
# CenterCrop(size=(200, 200))
# Pad(padding=20, fill=0, padding_mode=constant))
rp.transforms
# [RandomInvert(p=1),
# RandomVerticalFlip(p=1),
# CenterCrop(size=(200, 200)),
# Pad(padding=20, fill=0, padding_mode=constant)]
rp.p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
t4p0_data = OxfordIIITPet( # `t4` is transforms of 4 kinds.
root="data",
transform=RandomApply(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
CenterCrop(size=200),
Pad(padding=20)], p=0)
# transform=RandomApply(transforms=(RandomInvert(p=1),
# RandomVerticalFlip(p=1),
# CenterCrop(size=200),
# Pad(padding=20)), p=0)
# transform=RandomApply(transforms=ModuleList(
# [RandomInvert(p=1),
# RandomVerticalFlip(p=1),
# CenterCrop(size=200),
# Pad(padding=20)]), p=0)
)
t4p05_data = OxfordIIITPet(
root="data",
transform=RandomApply(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
CenterCrop(size=200),
Pad(padding=20)], p=0.5)
)
t4p1_data = OxfordIIITPet(
root="data",
transform=RandomApply(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
CenterCrop(size=200),
Pad(padding=20)], p=1)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=t4p0_data, main_title="t4p0_data")
show_images1(data=t4p0_data, main_title="t4p0_data")
show_images1(data=t4p0_data, main_title="t4p0_data")
print()
show_images1(data=t4p05_data, main_title="t4p05_data")
show_images1(data=t4p05_data, main_title="t4p05_data")
show_images1(data=t4p05_data, main_title="t4p05_data")
print()
show_images1(data=t4p1_data, main_title="t4p1_data")
show_images1(data=t4p1_data, main_title="t4p1_data")
show_images1(data=t4p1_data, main_title="t4p1_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, t=None, p=0.5):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rs = RandomApply(transforms=t, p=p)
plt.imshow(X=rs(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="t4p0_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0)
show_images2(data=origin_data, main_title="t4p0_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0)
show_images2(data=origin_data, main_title="t4p0_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0)
print()
show_images2(data=origin_data, main_title="t4p05_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0.5)
show_images2(data=origin_data, main_title="t4p05_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0.5)
show_images2(data=origin_data, main_title="t4p05_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0.5)
print()
show_images2(data=origin_data, main_title="t4p1_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=1)
show_images2(data=origin_data, main_title="t4p1_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=1)
show_images2(data=origin_data, main_title="t4p1_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=1)