Finds the contiguous subarray within a one-dimensional array of numbers that has the largest sum.
# Maximum Subarray Sum - Kadane's Algorithm # Description: Finds the contiguous subarray within a one-dimensional array of numbers that has the largest sum. def max_subarray(nums): """ Find the maximum sum of a contiguous subarray using Kadane's Algorithm. This algorithm efficiently solves the maximum subarray problem by dynamically tracking the maximum sum ending at each position. Time Complexity: O(n) Space Complexity: O(1) Args: nums (list of int): Input array of integers Returns: int: Maximum sum of any contiguous subarray Raises: ValueError: If the input list is empty Example: >>> max_subarray([-2, 1, -3, 4, -1, 2, 1, -5, 4]) 6 >>> max_subarray([1]) 1 >>> max_subarray([-1, -2, -3]) -1 """ # Handle empty input if not nums: raise ValueError("Input list cannot be empty") # Initialize with the first element max_sum = current_sum = nums[0] # Iterate through the array starting from the second element for num in nums[1:]: # Decide whether to start a new subarray or extend the current one # This is the core of Kadane's algorithm current_sum = max(num, current_sum + num) # Update the overall maximum sum if needed max_sum = max(max_sum, current_sum) return max_sum def max_subarray_with_indices(nums): """ Enhanced version of max_subarray that returns the subarray indices along with the maximum sum. Args: nums (list of int): Input array of integers Returns: tuple: (max_sum, start_index, end_index) Example: >>> max_subarray_with_indices([-2, 1, -3, 4, -1, 2, 1, -5, 4]) (6, 3, 6) """ # Handle empty input if not nums: raise ValueError("Input list cannot be empty") max_sum = current_sum = nums[0] max_start = max_end = start = 0 for end in range(1, len(nums)): # Reset start if current_sum becomes negative if current_sum + nums[end] < nums[end]: start = end current_sum = nums[end] else: current_sum += nums[end] # Update max_sum and indices if current_sum is larger if current_sum > max_sum: max_sum = current_sum max_start = start max_end = end return max_sum, max_start, max_end

# Maximum Subarray Sum - Kadane's Algorithm
# Description: Finds the contiguous subarray within a one-dimensional array of numbers that has the largest sum.
def max_subarray(nums):
"""
Find the maximum sum of a contiguous subarray using Kadane's Algorithm.
This algorithm efficiently solves the maximum subarray problem by
dynamically tracking the maximum sum ending at each position.
Time Complexity: O(n)
Space Complexity: O(1)
Args:
nums (list of int): Input array of integers
Returns:
int: Maximum sum of any contiguous subarray
Raises:
ValueError: If the input list is empty
Example:
>>> max_subarray([-2, 1, -3, 4, -1, 2, 1, -5, 4])
6
>>> max_subarray([1])
1
>>> max_subarray([-1, -2, -3])
-1
"""
# Handle empty input
if not nums:
raise ValueError("Input list cannot be empty")
# Initialize with the first element
max_sum = current_sum = nums[0]
# Iterate through the array starting from the second element
for num in nums[1:]:
# Decide whether to start a new subarray or extend the current one
# This is the core of Kadane's algorithm
current_sum = max(num, current_sum + num)
# Update the overall maximum sum if needed
max_sum = max(max_sum, current_sum)
return max_sum
def max_subarray_with_indices(nums):
"""
Enhanced version of max_subarray that returns the subarray indices
along with the maximum sum.
Args:
nums (list of int): Input array of integers
Returns:
tuple: (max_sum, start_index, end_index)
Example:
>>> max_subarray_with_indices([-2, 1, -3, 4, -1, 2, 1, -5, 4])
(6, 3, 6)
"""
# Handle empty input
if not nums:
raise ValueError("Input list cannot be empty")
max_sum = current_sum = nums[0]
max_start = max_end = start = 0
for end in range(1, len(nums)):
# Reset start if current_sum becomes negative
if current_sum + nums[end] < nums[end]:
start = end
current_sum = nums[end]
else:
current_sum += nums[end]
# Update max_sum and indices if current_sum is larger
if current_sum > max_sum:
max_sum = current_sum
max_start = start
max_end = end
return max_sum, max_start, max_end