Compose in PyTorch
Buy Me a Coffee☕ *Memos: My post explains RandomInvert(). My post explains CenterCrop(). My post explains Pad(). My post explains OxfordIIITPet(). Compose() can apply one or more transformations to an image as shown below: *Memos: The 1st argument for initialization is transforms(Required-Type:tuple/list of transformations): *Memos: The transformations are applied from the 1st index in order. It must be at least one transformation. There is the 1st argument(Required-Type:PIL Image or tensor(int)). *A tensor must be 3D. v2 is recommended to use according to V1 or V2? Which one should I use?. from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import Compose from torchvision.transforms.v2 import RandomInvert from torchvision.transforms.v2 import RandomVerticalFlip from torchvision.transforms.v2 import CenterCrop from torchvision.transforms.v2 import Pad c = Compose(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1), CenterCrop(size=200), Pad(padding=20)]) c # Compose(RandomInvert(p=1) # RandomVerticalFlip(p=1) # CenterCrop(size=(200, 200)) # Pad(padding=20, fill=0, padding_mode=constant)) c.transforms # [RandomInvert(p=1), # RandomVerticalFlip(p=1), # CenterCrop(size=(200, 200)), # Pad(padding=20, fill=0, padding_mode=constant)] origin_data = OxfordIIITPet( root="data", transform=None ) # `ri` is RandomInvert() and `rv` is RandomVerticalFlip(). # `cc` is CenterCrop() and `pad` is Pad(). ri_rv_cc_pad_data = OxfordIIITPet( root="data", transform=Compose(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1), CenterCrop(size=200), Pad(padding=20)]) ) ri_rv_pad_cc_data = OxfordIIITPet( root="data", transform=Compose(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1), Pad(padding=20), CenterCrop(size=200)]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=ri_rv_cc_pad_data, main_title="ri_rv_cc_pad_data") show_images1(data=ri_rv_pad_cc_data, main_title="ri_rv_pad_cc_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, t=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) c = Compose(transforms=t) plt.imshow(X=c(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="ri_rv_cc_pad_data", t=[RandomInvert(p=1), RandomVerticalFlip(p=1), CenterCrop(size=200), Pad(padding=20)]) show_images2(data=origin_data, main_title="ri_rv_pad_cc_data", t=[RandomInvert(p=1), RandomVerticalFlip(p=1), Pad(padding=20), CenterCrop(size=200)])

*Memos:
- My post explains RandomInvert().
- My post explains CenterCrop().
- My post explains Pad().
- My post explains OxfordIIITPet().
Compose() can apply one or more transformations to an image as shown below:
*Memos:
- The 1st argument for initialization is
transforms
(Required-Type:tuple
/list
of transformations): *Memos:- The transformations are applied from the 1st index in order.
- It must be at least one transformation.
- There is the 1st argument(Required-Type:
PIL Image
ortensor
(int
)). *A tensor must be 3D. -
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import Compose
from torchvision.transforms.v2 import RandomInvert
from torchvision.transforms.v2 import RandomVerticalFlip
from torchvision.transforms.v2 import CenterCrop
from torchvision.transforms.v2 import Pad
c = Compose(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)])
c
# Compose(RandomInvert(p=1)
# RandomVerticalFlip(p=1)
# CenterCrop(size=(200, 200))
# Pad(padding=20, fill=0, padding_mode=constant))
c.transforms
# [RandomInvert(p=1),
# RandomVerticalFlip(p=1),
# CenterCrop(size=(200, 200)),
# Pad(padding=20, fill=0, padding_mode=constant)]
origin_data = OxfordIIITPet(
root="data",
transform=None
)
# `ri` is RandomInvert() and `rv` is RandomVerticalFlip().
# `cc` is CenterCrop() and `pad` is Pad().
ri_rv_cc_pad_data = OxfordIIITPet(
root="data",
transform=Compose(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
CenterCrop(size=200),
Pad(padding=20)])
)
ri_rv_pad_cc_data = OxfordIIITPet(
root="data",
transform=Compose(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
Pad(padding=20),
CenterCrop(size=200)])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=ri_rv_cc_pad_data, main_title="ri_rv_cc_pad_data")
show_images1(data=ri_rv_pad_cc_data, main_title="ri_rv_pad_cc_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, t=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
c = Compose(transforms=t)
plt.imshow(X=c(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="ri_rv_cc_pad_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)])
show_images2(data=origin_data, main_title="ri_rv_pad_cc_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
Pad(padding=20), CenterCrop(size=200)])